If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2-4x+x^2=0
a = 1; b = -4; c = +2;
Δ = b2-4ac
Δ = -42-4·1·2
Δ = 8
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{8}=\sqrt{4*2}=\sqrt{4}*\sqrt{2}=2\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-2\sqrt{2}}{2*1}=\frac{4-2\sqrt{2}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+2\sqrt{2}}{2*1}=\frac{4+2\sqrt{2}}{2} $
| 1.4t=436.60-30 | | 0.19x+0.9(x-5)=0.01(3x-3) | | 2-2*x+x^2=0 | | 8(5)-70x=440 | | 3/10=9/10k | | 3/10=-9/10k | | 8x/70=440 | | 720=409.50x | | 4y+y+7=90 | | 15e+6=-8 | | Y=82.5+0.75Y-50i | | 3n+18=4n+36 | | f(X)=2/4× | | 2-4x=16+7x | | 10=4/n+5 | | 3/4x-2=3/8x-4 | | f(X)=2/4^ | | 14100=0.10x+0.8(155,000-x) | | (3x+7,4x-1)=90 | | 32.663=p+11.368 | | -54-11u=-10 | | -54-7u=-10 | | 8+7=3x+5 | | 10-3n=-17 | | 242=12s | | x^2-1.44x+0.45=0 | | x^2-1.44x+1.45=0 | | 0.12(y-3)+0.16y=0.04y-0.09(20) | | 4x-8+45+180-7x+1=180 | | 3/4x-1/2=1/8x+1 | | (3x+6)=(1/2x+12) | | 5x-18=-68 |